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1. INTRODUCTION

Most stochastic optimal control problems are not amenable to a solution
through the stochastic dynamic programming equation. This is so because
of the "curse of dimensionality." The need, therefore, naturally arises
for suboptimal algorithms. Those suboptimal algorithms should, however,
share desirable qﬁalitative features with the optimal controls. The study
of simple examples of discrete-time linear systems with quadratic cost
and multiplicative noise indicates two consequences of parameter uncertainty
on the optimal control law. On the one hand, the presence of uncertainty
in the parameter has a stimulating action on the control because a control
exercised at a given time can improve the accuracy of future parameter
estimates. This effect has been called loosely the probing effect of the
control. On the other hand, the presence of uncertainty which cannot be
reduced by the control has an inhibitory, loosely called the caution,
effect of the control; the larger those irreducible uncertainties, the

more attenuated the control should be. None of these consequences of

uncertainties, the so-called dual effect, are captured by the naive
"certainty equivalent” (CE) control law, which is obtained by setting all
random parameters to their a priori mean values and treating the system
as deterministic.

In the more general cases, wide-sense dual adaptive algorithms have
been suggested ([1], (2], [3]). The crux of those adaptive algorithms is
to approximate the cost-to-~go in the dynamic programming equation by
expanding it about a nominal trajectory to second-order terms in
perturbations resulting from random disturbances. The resulting cost,

called the dual cost, is minimized to yield the suboptimal control at the
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corresponding time stage. It has been observed by simulations [2], (5]
that the algorithms displayed the desirable caution and probing features.
Moreover, it has been claimed [5] that the dual cost could be decomposed in
a sum of terms which account respectively for the caution effect, the
probing effect and the deterministic part of the cost.

In general, however, it is impossible to compare such dual control laws
with the optimal one, which is unknown, in the case of _.constant but unknown
parameters, We consider here a different special case of a scalar, discrete-
time linear system with white multiplicative gaussian noise and perfectly
observed state. The optimal control law of such systems, for a quadratic
performance index, is known [4], [7]. We show that, in that special case,
it is possible to explicitly derive the dual cost and the dual ¢ontrol in
closed form, when the length of the planning horizon goes to infinity.

The dual cost on an infinite horizon is always finite, provided a simple
controllability and positive definiteness assumption holds. This is a
qualitative difference with respect to the optimal cost, which has been
shown [4] to be infinite on aﬁ infinite horizon, unless some inequality

is satisfied by the covariances; that property has been referred to as the

uncertainty threshold principle. Thus, the dual control fails to exhibit

that property.
Some valuable insight can be obtained, since we show that the asymptotic
(i.e., infinite horizon) dual control law is in fact equivalent to a first-
order expansion of the optimal control.law for systems with white parameters f::i;}
cion M

as a function of the parameter covariances, about the nominal value of null o O

O
parameter covariances, which corresponds to a deterministic problem. Since —]

the certainty-equivalent (CE) control is simply a zero-order approximation,
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the dual control is shown to be intermediate (optimal to linear terms)
between the CE and the optimal control. It is also understandable why
the uncertainty threshold principle cannot be captured by the dual control,
because it is an effect which is essentially nonlinear (quadratic and higher
order terms) in the covariances. The accuracy of the dual control law for
amall parameter covariances is quite surprising, as no learning can take
pPlace in this problem, due to the white-noise parameter assumption. In other
words, if the system parameters have small standard deviations about their
mean values, we demonstrate by means of a scalar example that the dual con-
trol ' is . (to first order linear terms in the parameter standard deviations)
identical to the white-parameter optimal control law, which involves no
learning. One can argue both ways whether this is "good news or bad news".
The "good news" is that if the system parameters are not very random, then
the inherent "robustness" properties of feedback, modulated correctly for
parameter uncertainty, require no detailed "learning" of the parameters,
provided that certain "caution" is exercised (this is not what the certainty-
equivalence principle states). The "bad news" is that the dual cortrol
algorithm does not seem to capture the required "caution" effects when the
system parmeters are very uncertain and very weakly correlated in time.

By the above comments we do not mean to imply any criticism of the
dual adaptive control algorithm. It represents an excellent contribution
to the state of the art in the field of stochastic adaptive control, and
(again loosely speaking) it represents an intermediate approach to the
control of systems with random parameters, somewhere between the case of
perfect parameter knowledge assumptions (the certainty-equivalence case)
and the (unrealistic) case that no learning of the system parameters is

possible (the white multiplicative parameter case). What the authors

L up—




attempt to do in this paper, by means of the simplest possible scalar
example, is to understand some of the theoretical properties of the dual
control algorithm. Thus, the reader should expect only a relatively minor
theoretical contribution; by no means we imply any superiority of any
stochastic adaptive control scheme that is useful for practical designs.
The entire field of adaptive control has not yet matured to the point that
can provide the engineering designer with useful instructions on how to
realize an adaptive control system.

Another contribution of this paper is to examine the structure of
the stochastic cost to go. In the dual control method the cost is split
into three parts, the detemministic cost, the caution cost, and the
probing cost. One would suspect that the probing part of the cost would
correspond to the active learning of the unknown parameters, and that it
would be zero in this example with multiplicative white parameters. How-
ever, the splitting of the dual cost between a caution and a probing term
fails to have an appealing meaning. Both terms combine to yield a sum
of positive weightings of the one-step predictions of the state covariances.
Thus, no distinction can be made between uncertainties that can or cannot
be influenced by the control.

In Section 2, the control problem is introduced. Section 3 presents
its optimal solution on a finite horizon and discusses its existence on
an infinite horizon, which is governed by the uncertainty threshold
principle. In Section 4, the dual adaptive control algorithm is applied
to the problem of concern. A closed form expression for the dual cost

is derived and it is proved that it remains finite on an infinite horizon,
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under mild assumptions. In section 5, the comparison between the optimal,

dual and certainty-equivalent law is performed for the infinite-horizon

7 contains the conclusion.

2. A Scalar, Multiplicative White-Noise Control Problem

The simple discrete-time stochastic control problem which will be

considered here is the following:
x(k+1l) = a(k)x(k) + b(k)u(k) (2.1)
y(k) = x(k)

The state x(k) is scalar and perfectly_observed, without observation noise.
There is also no additive process noise. The time constant a(k) and the
control gain b(k) are unknown parameters. They are independent from one
stage to another; namely, they constitute a white noise sequence. 1In

addition, they are assumed to be gaussian, with means a, b and covariance

matrix
= z
I=| % - . (2.2)
zab zbb
Therefore,

| E{fa(k) -a] [b(3) =B} = I &

v e £y =25} =
E{[a(k) -a] [a(j) -all} zaasjk (2.3)

| E{[b(k) -b] [b(3) -DBl} = zbbsjk

where 8. is the Kronecker delta.

ik
The initial state x(0) is known and the cost function is quadratic:

case. In section 6, the decomposition of the dual cost is examined. Section




¥~ 2 2 2
=€ ! I [Qx°(k) + Ru(K)] + Qx°(N) (2.4)
k=0

§ This stochastic contxol problem is one of the few which yield themselves

E; to a closed-form analytical solution [4]. On the other hand, its structure

3 is simple enough so that the dual cost can be expressed in closed-form,

too, at least when the horizon length N is infinite. This makes a com-

parison possible between the optimal solution and the suboptimal solutions 3

obtained from either the dual adaptive algorithm [2] or the certainty

equivalent strategy.

3. Optimal Control: Finite- and Infinite~Horizon Cases

R MRt ¢,

3.1 Finite horizon

i Because of the Gaussian character of the random parameters, their
probability distribution is entirely characterized by its first- and
second-order moments. If a and b denote the expectations of a and b

i
t- respectively, the optimal control law is found (4] to be the following

linear feedback law:

i uOPT(j) = - G(3)x(3) (3.1)

i where
|
K(j+1) (E__ + a b)

| G(j) = 20 > (3.2)

R+K(J+1)(be+ b")

and the scalars K(j + 1) are given by a backward recursion of Riccati

type:
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K(j) = Q + 1<(j+l)(22a‘a +a’) - : =) (3.3)
R + K(j + 1)(be+ b™)
K(N) = 0
The optimal cost is equal to:
2
J* = K0)x" (0) (3.4)

Each K(j) can be viewed as a function of zaa' L ., be. The deter-

ab
ministic problem, where a and b are known parameters, corresponds to the
values zaa = zab = be = 0. It can be verified indeed that, upon setting

the covariances to zero in (3.3) and (3.2), the solution of the deterministic
linear-quadratic problem is obtained. The certainty-equivalent (CE) control
strategy consists of replacing the unknown parameters by their current
estimates and then solving the corresponding deterministic control problem.
In the present problem, because of the white-noise property, the best cur-
rent estimates of a and b are their a priori means a and b, since no learning
is possible. Therefore,the certainty-equivalent strategy amounts to setting

E = zab =% =0 in (3.1), (3.2), (3.3). It is a zero-order approxi-

aa bb

mation of K(j) as a function of I about I = 0. Intuitively, the certainty-
equivalent law will become increasingly poorer as the covariances depart
further from zero, i.e., as the problem becomes more stochastic. This is
evidently always so, but it will be seen below that the same remark

applies to the dual adaptive control law as well.

3.2 1Infinite horizon; the Uncertainty Threshold Principle

When the time horizon N goes to infinity, it can be shown [4] that

the optimal cost J* need not remain bounded. In fact, a necessary and




e

sufficient condition for the cost J* to go to a finite limit when N + ® is

that the following inequality between the covariances should hold:

i
e (L. + a b)
AR D A - <1 (3.5)

aa 2
be + b

The left-hand side of (3.5) has been called the uncertainty threshold, and
the property, the uncertainty threshold principle. This is an essentially
nonlinear result, which states that, if the covariance matrix L lies out-
side of a certain region, the asymptotic infinite horizon problem is ill-
posed. This is in sharp contrast with the deterministic problem where,
under mild controllability and positive-definiteness assumptions, the
optimal cost reaches a finite limit as N + ®, In the present problem, those

assumptions are:
B¥Or g>0, R> 0. (3.6)

It is seen that, for zaa = ;éb ='Xbb = 0, the left-hand side of (3.5) is equal

to zero, so that (3.5) is satisfied.
When the inequality (3.5) is satisfied, the limit of K(j) for N + =
is the solution of the algebraic equation corresponding to (3.3), namely:

- Kz(Zab-l- ab?
K=0Q+ K(zaa +a’) - =3 (3:7)
R + K(be +b")

Inequality (3.5) is also necessary and sufficient in order for the
algebraic equation (3.7) to have a unique positive solution [4]. This
solution will be denoted K. It is in fact a function of the covariance

matrix I:

K=K(EZ .

e
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An alternative way of stating the uncertainty threshold principle is there-
fore as follows.

The nonlinear function ifg) is defined on the region of the space of
Z described by (3.5), and it approaches infinitely as L goes to the
boundary of that region. Note that the asymptotic value of the cost in
the CE strategy is obtained from the value of EKE) at L = 0, just as in

the finite-horizon case.

4. Dual Adaptive Control

4.1 Expression for the Dual Cost

In this section, we now apply to the stochastic control problem
introduced in section 2 the wide-sense dual adoptive control algorithm
of Tse and Bar-Shalom [1], [2]. This algorithm consists of approximating
the cost-to-go from step k + 1 on in the dynamic programming equation;
the sum of the cost at stage k and of this approximated cost-to-go, called
the dual cost, is minimized with respect to the control u(k) to yield
the dual control at step k. The approximation of the cost-to-go is
carried out in two steps. In the first step, the enlarged state z(k + 1)
consisting of the initial state x(k) and the random parameter is esti-
mated at time (k+1) from the information available at time k, and the
optimal cost corresponding to a deterministic dynamical system is cal-
culated. This deteministic dynamical system is obtained from the sto-
chastic one by setting the random parameters to their expectations.

This step is essentially the application of the CE control, say uo(j),
from time (k + 1) on. It results in a nominal trajectory Eo(j) (3 > k+1),
and a nominal estimate Jo(k + 1) of the cost-to-go.

In a second step, random disturbances £ (j) (for j > k + 1) are intro-

duced; they cause perturbations §?(j) of the nominal states. The new




=l 0=
trajectory is described by
z(3) =50(j) +38z(3) ; >k +1) .

Perturbation controls Su(j) are exercised so as to minimize the expected
increment in the cost, AJo(k+1). In order to solve that minimization
pmMm,meﬁuemnMMHmégj+nisummwuamewﬁu
terms in 6z (j) and Su(j), using the dynamical eqution about the nominal
trajectory go(j) and control uo(j). The cost function is also expanded
to second order about the nominal trajectory.

This permits the evaluation of AJO*(k + 1), the minimum of AJo(k o o
The wide-sense dual adaptive control a time k, ud(k), is then obtained
by minimizing over the input u(k) the dual cost Jd[u(k)], namely the sum
of the cne-step cost at stage k and the approximation of the cost-to-go

from stage (k + 1) on:
A 2 2
Jgluk)] = E{Qx“ (k) + Ru“(k) + I (k+ 1) + AT*(k + 1)lyk} (4.1)

where Yk denotes the information available at stage k. In the present
problem, Yk can be described by the sequences x(i) (i=0,1,...,k-1) and
u(i) (i=0,1,..., k-1).

In the problem introduced in section 2 , the enlarged state is de-

fined by
2 (k) = [x(k), a(k), b(k)] (4.2)

Step 1 of the dual adaptive algorithm sets the initial state at

time (k + 1) to the estimated value, given the information Yk:

x (k+ 1) = X(k + 1lk) = ax (k) + Du(k) (4.3)

?
i
4 o
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The deterministic version of the dynamical equation (2.1) is

: > - = . — s o o » d 1
¥, (3 + 1) =ax (j) + bu (j) 3=k+1,...,N-1) (4.4)

The nominal contrnl sequence is the optimal control sequence of the
associated deterministic problem from time (k + 1) on:
K(i+Llab

u_(3) = -6_(§)x_(§) = - —=— —— x () (4.5)
° LA R+ K (5 + 3

and E;(j) is given recursively by the Riccati difference equation:

K+ 1a’h

:
;
i Ko(j)
)

— -2
=Q+K (3+La“ - = (4.6)
L R+ K (3 + 1)b?
K (N) =0
[o)

Equation (4.6) is in fact the special version of Eq. (3.3) corresponding
to zaa = zab = be = 0. The initial estimateof the cost-to-go is given
Y (4.7)

T,k + 1) = (/2K (k+ DX (k+ 1) = (L/2)K (k + 1) (T () + Bu()]?

In step 2 of the dual adaptive algorithm, the covariances of the enlarged i

state appear, in the calculation of the cost perturbation AJ;(k + 1).
The updated covariance matrix of the perturbation §z(j) of the enlarged
state z(j) given the current information, along the nominal trajectory,
is:
0 0 0
Eo(j‘j) {9 I Eae é

1 0 Iy Iy

This results from the fact that the state X(k) is exactly observed and

from the white noise assumption on a(k) and b(k). The one-step pre-

) dicted covariance of the perturbation of the enlarged state, along the

nominal trajectory, is




b

T -y

i

=10
o . .
Zxx(J‘FlIJ) 0 0
I G+1y - 0 i Z. (4.9)
° Lab L
where
(5 + 1|3 =L %2 + 2L .x (Jlu_(§) + I u*() (4.10)
XX aa o ab o o bb o E

and xo(j), uo(j) denote the nominal trajectory and control, as obtained
in step 1.

Equation (4.9) also results from the white-noise assumption and the
perfect observation of the state. From the expression for the dual cost

as given in Tse et al. ([3], Eqg. (3-12)) it follows that

J (k)] = (1/2)Ru (k) + (1/2)E°(k+1)?¢(k+1lk)2 + p, (k+1)R (k+1)

N
+ /2] § WHEI G + [Z0+1[K) = I Octl[ke1) 1K (k1)
=kl
N-1
+ j=§+1[§°(3+113) - §°(3+1I3+1)1§°(3+1) (4.11)

In Eq. (4.11), §°(j) is a matrix which has the dimension of the enlarged

state. Denoting the random parameters by the vector
Q}k) = fa(k), b(k)] , (4.12)

the matrix §b(j) can be partitioned as

XX . 8, .

K2* (3) K (3)
K (3) = (4.13)
(o) 0x 88 .

K (3) K, (3

d o e .-_;A. PR TR AR e e IR
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It turns out [3] that

B -

X (3) KO(J) (4.14)
where E;(j) is the solution of the Riccati difference equation (4.6).

The matrices E:G(j) and gze(j) can be obtained from recursions [3] once
i the sequence K:x(j) is known. The vector Eo(k+l) is zero in our example
because we deal with a regulator, not a tracking problem. Also, g(k+1]k),
the one-step predicted covariance of the enlarged state at stage k, is

| given by (4.9) with j=k, since

g x(k+1lk) = 7 x(k) + Bu(k) (4.15)

In eq. (4.11), the matrix W(j) has the following structure (see (3],

Eq. (3.17)):

- =
; Q Vl VZ
w3 =jv, o 0 (4.16)
_V2 0 0 i
: The exact definition of Vl’ V2 is unimportant in this example, be-
P cause 3
(4.17)
g ¥ % 0 0 0
tr(WHL G =ex)fv, o 0 o I, I, =0
v, 0 0 0 Zab Ebb
1 ' On the other hand,
! (- . XX .
4 ‘ zxx(3+1|3) K, (3+1 0 ©
| : : S o - o o
| trl§°(3+n [§°(3+1\3) 20(313)]} tr 0
| 0 ¢ 0
O SN S e 7° (441|9IF (441 (4.18)
= 0 G+LHKTG+ D) Lo (31K G+1)

e
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From Egs. (4.11), (4.14), (4.15), (4.17), (4.18), and the remarks just

made, it follows that the dual cost is given as follows in our problem.

3 lulk)] = (1/2)Ru? (k) + (1/2)[ax(k) + Eu(k)]zio(ku)

- (4.19)
== 1 IR (o] z %
+ (/20K (DT (ktl[k) + (1/2)j=§+1xo(3+1)2’°‘(3+1‘J)

4.2 Infinite-Horizon Case

It will now be shown that, under the same assumptions which guarantee
the finiteness of the certainty-equivalent cost over an infinite horizon,
the dual cost too remains bounded. Therefore, there is a qualitatiye dif-
ference between the dual adaptive control and the optimal control in the
infinite~horizon case: the former does not obey the uncertainty threshold
principle, which governs the latter.

Controllability of the deterministic dynamical system (4.4) is
equivalent to the property that b # 0. Under the assumptions (3.6)

(S'# 0, >0, R>0), it is well known [8] that the solution E;(j) of
Riccati recursion (4.6) reaches a finite positive limit E; as N > »,
Hence, if uo(j). xo(j) are respectively successive controls and states

of the certainty-equivalent strategy,

o A 2 o 8
lim L [on(j) + Ruo(j)] = (1/2)K°x°(k+1) < +® (4.20)
N+ j=k+1

According to Eq. (4.19), we must prove that

M= o

z K (j+1)Z (j+l[j) remains bounded as N + ®, From Egs. (4.5) and
j=k+1 © o

(4.10),

P W S R ORGP 5 G AT v ~ ——
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(4.21)
N-1 _ 1 N-1 _ 3 5
j£k+1!<°(3+l)2xx(j+lh) = j=i+1K°(J+l) [Z,,-2 L6, + L 1Gs ()12 ()

In fact, both E;(j + 1) and Go(j) depend on N: let us emphasize that
dependence by the notation E;(j+l; N), Go(j;N) . Clearly,

X (5+1:N) € K (5-

KO(J+1,N)__KO(J.N) (4.22)

since the left-hand side defines the minimal cost on a shorter horizon.

From Eq. (4.5),

. o abR
- e -2 .2
8K°(3+1) [R+K°(J+l)b 1
Accoidingly
X o . —— X
3G~ (3) 3G _(3) R(ab)” K_(j+1)
o 5 Q Q
— =26 03) — = — — 320
axo(j+1) 81<°(j+1) (R + xo(j+1)b |

whence it follows that, also,

2 2
GS(3+L:iN) < GL(3: W)
or
le G+ | < |6, (3:m] (4.23)
From (4.22) and (4.23),
K_(J+1:N) < K,

and

le, (3+1:0 | < |6 |
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where G° is obtained from f; by the same function which yields Go(j)
from Eo(j). (Eq. (4.5)). On the other hand, §-_, as a covariance matrix,

is symmetric and positive semi-definite. Therefore,
(E =28 .G (3) + I..G>(3)] < olG2 () + 1] (4.24)
aa ab o bb o - o A

where 0 is the largest eigenvalue of I. As a result,

N-1 N-1

- . ) ; - 2 3
T K_(3+1) I°_(3+1]3) < Ko[cZ + 1] I x_(3) (4.25)
j=k+1 © e . SN j=k+1 °
However,

s et 2 = 3
Qlim | T x ()| <lim I [Qx(3) + Ruj(3)] = 1/2 Kx (ktl) < +
N |§=k+l o j=k+l © . e

Since Q > 0, it follows that

N-1 2

lim I x (§) < + =

N+ j=k+1
and therefore, the left-hand side of (4.25) remains finite as N + *.

A consequence of this observation isthat there will be an important
discrepancy between the trajectory resulting from the application of
the dual control, and the optimal trajectory, for the range of covariances
which do not obey the inequality (3.5) of the uncertainty threshold
principle. This qualitative difference is confirmed by a quantitative
comparison in the next section.

5. Comparison between optimal and dual control in the infinite-horizon
Case

From the expression (4.19) for the dual cost and the knowledge that

it remains bownded on an infinite horizon (section 4.2), it is possible
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to obtain a closed-form expression for the limit of the dual cost when

N goes to infinity, in terms of the various problem data and the limit
Es of the solution to the Riccati recursion (4.6). This in turn provides
a closed~-form expression for the dual adaptive control, which can there-
fore be compared with the optimal control as given by Egs. (3.1), (3.2),

(3.3). Let

A Bl "o X
a(j;N) K (3+1;N) Zxx(a«»llg) (5.1)

We are interested in evaluating

N
L=1lim I a(j,N) (5.2)
N+ j=k+1

To that end, we use Eq. (4.22), and the stability of the closed-loop

dynamical system of the certainty-equivalent strategy. Namely,
xo(3+1) = AO(J)XO(J) (5.3)

where

a R
R + Eo(j+1)32

Ao(j) =a-~-b Go(j) = (5.4)

It is known [8] that, under the assumptions (3.6), the asymptotic closed-

loop system is strictly stable:

lalr
18] = 1im|8 )| = ——5 < 1 (5.5)
N+ R+K°b
From egs. (4.21) and (5.3),
j=1

0 8% (1)x? (kel)

- 2
a(j,N) =K (3+1)(Z__-22_ .G (§) + £ .G (3]
(] aa ab o bb o {=k+l

*__," L. it antaiteitisiidl, PPN, S

e~ e g e et
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where, in fact, Eo(jm = E°<j+1,-m, G (3) = G (3:N), A(1) = A(isN).

However,

N m N
L = lim £ a(j,N) = lim I a(j,N) + I a(j,N)
N+ m=k+1l N | j=k+1 j=m+l

for any m € {k+l,...,N-1}. Therefore, also, 3
m N ]
L = lim lim I a(j,M) + T a(j,N) ;
mo N+ | j=k+1 j=m+l
But, it has been shown in section 4.2 that
N
lim I a(j,N) < += for all k
N*o j=k
Accordingly,
N
lim jlim I a(j,N)| =0 .
e | Nv© j=m+l

and

m m
L=1limlim £ a(j,N) =1im| £ 1lim a(j,N) (5.7)
mo N+ jmk+l o | j=k+l N

From (5.6), using the convergence of K(j+1;N), G(j:N) and D(j:N), it is
concluded that a(j,N) goes to a limit as N#®, and

2(j-1-k) x2

s - 2
lim a(j,N) = lglzu -2 zabGo + beGolA (k+1) (5.8) k
N+
where
ioi b
Go 5 = =g
R + Ko b

Accordingly,
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= Kt -t o 2(3-1-k)
L= Ko[zaa 2 Zab g ¥ beGO] Xp(k + 1) lim j’IZ&l A
K & a
= soup [Laa-z Zabco + beGO ]xo(k+1) (5.9)

where the second equality results from |A| < 1.
In summary, taking into account Egs. (4.3), (4.19), and (5.9), the

asymptotic value of the dual cost is arrived at:

Lim J,[u (k)] (/DR + (/2 (3 x(K) + Bu(k) 12

N>
= 2
+ (1/2)K°[Xaax (k) + 2£abx(k)u(k) + 2bbu(k)] (5.10)
Eo 2 - — 2
+ (1/2) I-Az [zaa = 2Gozab & GObe] [ax (k) + bu(k)]

The minimization of the asymptotie dual cost (5.10) with respect to

u(k) yields the stationary dual adaptive control law,u d[x (k)).

- - 2 - (5.11)
Kozah % [Ko p l-Az (zaa- 2<;oza\b @ Gcazbb)]ab
ud[x(k)l = - b g x (k)
— o 2 -
R-l—b2 [Ko i l-A2 (zaa 2Goz:a.b 5 Gé zbb)] . Kozbl.:»

Comparison of Eq. (5.11) with the asymptotic version of the optimal con-
trol law (3.2) evidences a similar structure. However, the limit of
K(j+1) as N*® which occurs in (3.2) - if it exists - is the positive
solution of Eq. (3.7) - if it exists; that is, K(I). Recall that that
limit exists if and only if g lies within a region defined by Eq. (3.5).
In contrast, the parameter Eo which occurs in (5.11) is always defined,

finite and positive, and
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From Eq. (3.7), the gradient of f(_Z_I_) with respect to I, evaluated at Z=0,

can be found (see appendix), and the resulting first-order expression of

K(Z) about =0 is accordingly found:

E(z)—E+3—l£()lz+ ( 5.13
= 7 % 8§_ =" lo= o(Z) (5.13)
and
T K
9K . o % 2
T @}z = —3 (2,,~26F  +GI.) (5.14)

Hence, the expression between brackets in (5.11) is recognized as the

first-order expansion of K(Z) in I about £ = 0. Note that, from (5.14),

T
[Ko + g% (Z) lo?':'_] is positive, regardless of the value of the covariance
matrix I. This follows from (5.14), the fact that K > 0, 1-4% > 0 ana

the positive semidefiniteness of I. The stationary optimal control law

it

(from Egs. (3.1), (3.2)) exists in the neighborhood of L=0 (because ¥=0 satisfied

Eq. (3.5) and by continuity) and can also be expanded to first order in

E: \
Ju l du T
o OPT OPT 0K
Uopr (2) = Yopp (O + | 37 | 4 5 % |, L+ol@ (5.15)

where both the direct dependence of u pp o0 Z and the indirect dependence

through f(_‘&_) have been taken into account. It follows from (5.15) and

(5.13), (5.14) that

|
op (D) = 0(®)

ugta) = %,

or

[ug (2) - U e @

1i =0 (5.16
240 T2 ’
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where IIEJ[ is the euclidean norm, for instance. (See the appendix for
a proof).

On the other hand, the approximation is no better than the first
order. Indeed (see appendix), the second derivatives of u

OPT
to I involve the second derivatives of K(I), evaluated at I=0, which are

with respect

not present in the dual uge Therefore, the stationary dual control (on
an infinite time-horizon) is the f;rst-order approximation of the optimal
control, as a function of the covariance matrix I, about the numerical
valye E?O which corresponds to a detemministic problem. It has already
been pointed out (section 3.1) that the certainty-equivalent control is

a zeroth-order approximation, in the sense that

uee®) = Uopp @ | pog

This is apparent from Eq. (4.5). Thus, the result of this section shows
that, in our particular problem and for an infinite horizon, the dual
control performs better than the CE control, but less well than the

' optimal one. The accuracy of the dual control can be quite high for small
covariances, which is somewhat surprising in view of the fact that the
parameter cannot be learned, due to the white-noise property.

When the parameter covariances grow large, however, the discrepancy
between the dual and the optimal control can become substantial. This is
confirmed for instance by the consideration of limiting cases. Assume,
for instance, that a and b are uncorrelated, with the variance of a

being fixed. For Ebs*”, K(L) goes to:

- eat et
aa

. & 4 o gt ik
sl b oo AL vt el LM 2
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as is apparent from Eg. (3.7). The inequality (3.5) to be satisfied by

the covariances is

z +a’<2

aa
The optimal control law (3.2) goes to zero when be goes to infinity.
This is an example of caution effect: the control is inhibited by un-
certainties that it cannot affect. In constrast, the dual control law

ud(k) goes to a finite limit

lim  ug (k) = - 2y
be“ 5'2_._ (1;A )

G

o

Hence, one can say in that case that the dual law is not cautious enough.
Tre fit can, however, sometimes be better, even at large values of the
covariances. For instance, in another limiting case where a and b are
still uncorrelated, but be remains fixed and Zaa*w, both laws have the

same limit:

lim u___ (k) = lim u, (k) = - 2= x(k) .
7 opT a =

6. Decomposition of the Dual Cost

A decomposition of the dual cost for the general discrete stochastic
control problem with quadratic cost, linear dynamical equations and
linear evolution equation for the randbm parameters has been proposed
in the literature [5]. This decomposition splits the dual cost into a

detemministic term, a "caution" term and a "probing" term. The de-

T A TR e
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termministic term JD(k) represents the value of the cost-to-go corresponding
to the certainty-equivalent strategy, namely, it depends on the unknown
coefficients only through their current estimated expectations.

The caution term Jc(k) is supposed to reflect those uncertainties
that the control at stage k cannot affect directly, although it can
affect their weightings. Those include the one-step predicted covariance
of the enlarged state at stage k, and the covariance of the noise of
the enlarged state.

The probing term Jp(k) contains those uncertainties which the control
at stage k can influence; those include the future updated covariances.

In our problem however, the updated covariance matrices of future states
are all equal to the a priori covariance matrix of the paramters a, b,
because of the white-noise property, so that they cannot be influenced
by the control. The various components of the dual cost are as follows

[5] ’ {6] :

3 k) = (1/2)Ru? (k) + (1/2) [ax (k) + Fu(k)lzio(km (6.1)
I (k) = (1/2)R (k+1) T |, + (1/2)N51 er 0 10198, (6.2)
c o w+1lx A T Koyt ‘

: . : 00
and Jp(k) is given [5] as a function of §ﬂ+l and K;:I’

The dual cost is the sum of the three terms:

for j = k+1,...,N-1.

Jd(k) = JD(k) + Jc(k) + Jp(k) . (6.3)

Using the recursions (3] satisfied by K?e

o . X
K1’ and Eq. (4.10) for zxx(3+1|3),

it is possible to verify that (6.3) is consistent with (4.19). However,

the caution and probing terms combine, in our example, to yield:




- ey

g (6.4)

N-1
k) + 3 (k) = (1/2)K K (5+1Z° (5+1]3
J_k) P( ) = (1/ )Ko(k+l)2xx(k+l|k) + (1/2) j=i+lx°(3+1)zxx(3+1,;)

In view of Eq. (4.10), it is clear that the control u(k) can affect both
Zxx(k+l|k) and Z:x(j+1]j), for j > k+1, but it cannot affect the

coefficients E;(i) (i=k+1,...,N). Hence, the decomposition into (6.1)

and (6.2) does not seem to have any intuitive appeal in the present
situation.
Perhaps, another splitting of the cost would be more appropriate,

where the nondeterministic part of the cost, J would be expressed

a™p’
as the sum of one term which corresponds to the open-loop feedback
strategy (7], and the difference.

In conclusion, it seems that, even though the dual algorithm is

very near optimality for small covariances (Section 5), its action cannot

be explained by the decomposition between probing and caution in the

present scalar example.

7. Conclusion and Suggestions for Future Work

The motivation for this analysis has been the desire to gain more

insight into the behavior of the wide-sense dual control algorithm [1], {

{2], whose available results so far arise from simulations. Those

results are, of necessity, qualitative rather than quantitative because

a comparison of the adaptive control with the optimal control is usually

impossible since the latter is unknown. An attempt towards the quanti- f
zation of some desirable adaptive features possessed by the dual control -

probing and caution - was made recently [5], by splitting the dual cost

into component terms which each are claimed to account for a particular

effect.

T
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The approach that we have taken here has been to concentrate on a
special discrete stochastic control problem (quadratic cost, linear
dynamics, multiplicative guassian white noise with perfectly observed |
state) where the optimal control is known. The special nature of the |
i problem makes it possible to evaluate the dual control, too, in closed
analytical form, at least for the infinite-hroizon case. This permits
a thorough comparison with the optimal control, which reveals (1) that
the dual control does not share a fundamental property of the optimal
control, the uncertainty threshold principle; (2) that the dual control
approximates the optimal control linearly in the covariances of the
random parameters, for small values of the parameter covariances.

Since no learning can occur (because the parameters are white-noise),

however, not the case. Instead, probing termm and caution term combine

one would expect the probing term in the dual cost to vanish. This is, J

to yield a positively weighted sum of the one-step predicted covariances
of the future states. This observation makes one doubt the usefulness
of the splitting between caution and probing terms in general, as we'._
as their intuitive meaning.

Also, alternative decompositions of the dual cost should be in-
vestigated. 1Ideally, one term should correspond to the certainty- |
equivalent control law (this is accomplished by the deterministic term);
another term, to the open-loop feedback law, and the remaining term would

account for the learning characteristics of the algorithm.
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9. Appendix éj
We shall establish equations (5.14) and (5.16). 1
:

1. Proof of Equation (5.14) p

Equation (3.7) can be described abstractly as

F(K,L) =0 (a.1)

Hence, if K(I) denotes the positive solution, the following is an identity j
in I: l
F[K(Z),Z] =0 (a.2)

Upon differentiating (A.2) with respect to I about I = 0, one obtains:

| ()3 8

(a.3)

Q)
T
—~—
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whence
(35‘ Ty
BE o= 9F 5
) 9K ) o
The numerator and the denominator in (a.4) are now calculated. From
(3.7),
s Kz(Zab +3b)?
F(K,2) = Q + K(Z,+a%) - o= = K (a.5)

R+K(be+b)

Denominator of (aA.4)

- =2 =2 =2
RK(Z. + a )[2R+2K(Zab+b )-K(Xbb+b )]

;R+x(bb+32)]2

Therefore,

ey o2 _l_x'a'zﬁz(x32+zn) =;2.]__a—zr(lwfx(z':'z)z-kzl
K /o =22 =2.2
R+Kb*) (R+KDB°)

- aznz Sox v A2 ) (A.6)
-2 2 -
(R+Kb“)

where the last equality results from (5.4), (5.5).

Numerator of (A.4)

ar')'r 3F ) OF ) (BF )
I = z & [ z P % (A.7)
(52 o— (Haa o aa (azab o ab 32bb o "bb
F -
i
aa
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hence
9F .=
(az ")o k (a.8)
aa
3 pp—
3F r K (zab + ab)
E}A 2
bb. R+ K(I + 531
oF F iR’
L el g A.9)
bb (R+Kb")
2 l(2(2 +ab)
9F ab
azab R+x(2bb+b2)
_2.._
_gg 0" 2K ab E 8 zb (A.10)
ab R+ Kb
Accordingly,
2Kablt 2 =2=2
(%") TL-wI, - G by Ty s
=/o " omenE™) (R+Kb~)

2.
= K(Ziaa - ZGZab + G zbb)

where Eq. (4.5) has been used. Thus, (5.14) results from (A.4) and

(a.6), (A.ll).

2. Proof of Equation (5.16)
The optimal control gain (3.1), (3.2) is a rational fraction in

K(Z), more specifically a function of the type

A+ BK(D) + (CDKE)
(Z) = x (A.12)

u
OPT — T
A+ alx@ + (c1§_) K(2)
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On the other hand, the dual law is expressed by (5.1l.) as

A + B[K(0) + §j(0)T§) + g?gg(o)

uy (Z) = - - x (A.13)
A, + B, [K(0) + K'(0) L] + ¢, ZK(0)
1 1 - - —1-
where

with the same coefficients A, B, ¢, A;» By, g as in (A.12). Comparison

of (A.12) and (A.13) shows that, in (A.13), both the numerator and

the denominator of (A.12) have been replaced by their first expansion
in I about 0. It follows that (A.12) and (A.13) have the same first-

order expansion in I about I = 0.

In effect,
b _ A+ B K(0)
Ugpp () = u4(0) A, + B.X(0) -

and

' T
auopT z ’aud G [Al + BIK(O)][BI_K_ (0) + K(0)c') &
£y 0 o

2
[Al + B]_K(o)]

[a + BR(O)] [B,K' (0) + K(O)_C_i]
i X

2
[Al + slx(O)l
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